

PowerBatt Solution Field Test Report

Prepared By:

Electric Applications Incorporated 1337 East Washington Street Phoenix, Arizona 85034 Prepared For:

Battery life extender

Christopher French

www.powerbattusa.com

PowerBatt USA

© 2022 by Electric Application Incorporated. All rights reserved No part of the contents of this document may be reproduced or transmitted in any form or by any means without the express written permission of Electric Applications Incorporated.

Approvals:

Approval: Donald Karner

President

Company certifies this test has been conducted in accordance with the referenced Battery Test Plan and Test Specifications. Testing was performed in accordance with requirements of ISO/IEC 17025 with measuring standards traceable to the National Institute of Standards and Technology. Units of measurement are stated according to the International System of Units (SI). All raw data is reported as uncorrected for uncertainty or environmental effects and relate only to the items tested. Measurement uncertainty is taken into account by listing the uncertainty measurement with the results. The end user is responsible to determine the fitness for use. The uncertainty is not used when determining In/Out of tolerance conditions. Measurement uncertainty is reported per measurement, when available.

Any information provided by the customer can affect the validity of results.

EAI has incorporated a customer supplied interpretation of the test results in Appendix 7. EAI does not offer an opinion on the analysis or conclusions presented in this document

Table of Contents

Approvals:	•••••
Table of Contents	2
List of Tables	
1 Evaluation Procedure	3
2 Test Results	
Appendices	5
List of Tables	
Table 1 Evaluation Test General Information	
TABLE 2 SUMMARY OF LOAD TEST RESULTS WITH THREE TESTED BATTERIES	
List of Appendices	
**	
APPENDIX 1 GNB LOAD TEST BEFORE ADDING POWER BATT SOLUTIONS	
APPENIDX 2 GNB LOAD TEST ONE MONTH IN SERVICE AFTER ADDING POWER BATT SOLUTIONS	
APPENIDIX 3 HAWKER LOAD TEST BEFORE ADDING POWER BATT SOLUTIONS	
APPENDIX 4 HAWKER LOAD TEST ONE MONTH IN SERVICE AFTER ADDING POWER BATT SOLUTIONS	
APPENDIX 5 DOUGLAS LOAD TEST BEFORE ADDING POWER BATT SOLUTIONS	
APPENDIX 7 DOUGLAS LOAD TEST ONE MONTH IN SERVICE AFTER ADDING POWER BATT SOLUTIONS	
APPENDIX 7 POWERBATT USA INTERPRETATION OF TEST REPORT	

1 Evaluation Procedure

Testing was conducted to determine the impact of adding PowerBatt solution to flooded leadacid batteries that have been in operation for multiple years and have lost a significant portion of their nominal capacity. Three 36V flooded battery packs manufactured by GNB, Hawker and Douglas were selected for testing at Dircks Logistics, a logistics warehouse located in Tolleson, AZ for this study. The batteries were selected as representative of flooded products with significant capacity loss from in service operations. Two load tests were conducted on each of the three battery packs, one before and one after the addition of the PowerBatt solution, allowing an evaluation of the impact of PowerBatt on the run time of batteries in field use. Before the first load test, the battery packs were fully charged and equalized using Dircks Logistics inhouse Enersys Enforcer charger (serial #KJ123435). This is the charger that the warehouse operators typically used to charge these batteries. Open circuit voltage and acid gravity were measured in this fully charged and equalized mode. The first load tests were then conducted using a BLT 96V discharge unit provided by PowerBatt. Discharge was performed at a constant current 160A or 150A and the total discharge time recorded. The discharge voltages of each cell were measured every hour during discharge and more frequently as they were approaching the end of discharge voltage of 1.75 vpc.

After this first load test, PowerBatt solution was added into each cell with a calculated amount of 60mL/100Ah of plate capacity. The batteries were then returned to service in the Dircks Logistics warehouse. The battery packs were returned to service in their typical warehouse service after addition of the PowerBatt solution.

A second load test on each battery was conducted after the batteries were in service for approximately one-month. The same test procedure was used to on the second constant current load test as was used to conduct the first load tests.

Table 1 Summarizes the general conditions used for this evaluation study.

Table 1 Evaluation Test General Information

Test Site:	Dircks Logistics, 860 S 83rd Ave, Tolleson, AZ 85353
EAI Test Engineer	Richard Simpson
Begin of Test Date	21-Apr-22
End of Test Date	26-May-22
Charger	Enersys Enforcer, Serial #KJ123435
Load Test	BLT 96V 160A, Serial # FS1001, P.B.M. S. R.L.
Discharger	Vignola, Italy ⁽¹⁾

⁽¹⁾ This equipment was not calibrated. However, the same settings were used for both the initial discharge and the discharge after adding PowerBatt solution

Upon completion of testing, PowerBatt USA provided its interpretation of the test results. This is documented in Appendix 7.

Test Report: EAI-PWB01-22-06 1 Page 3 of 17

2 Test Results

An increase in the time to discharge was observed for all three battery packs tested. Table 2 summarizes results of the battery discharge tests results. An increase in discharge time varying from 13% to 48% was measured in the test battery packs after the addition of PowerBatt solution.

Table 2 Summary of Load Test Results with Three Tested Batteries

Battery Manufacture	Year In Service	Serial Number	Pack Voltage (V)	Pack Capacity (Ah)	BOT Test Date	BOT Rate (A)	BOT Test Duration (HH:MM)	PowerBatt Solutions Added (mL/cell)	EUI Test Date	EOT Test Duration (HH:MM)	BOT to EOT Change
GNB	2015	GAT3262	36	1020 @ C ₂₀	4/22/2022	160	3:18	612	5/24/2022	4:52	48%
Douglas	2015	MNA1191611	36	750 @ C ₆	4/25/2022	150	3:26	400	5/25/2022	3:52	13%
Hawker	2016	PL106162171	36	750 @ C ₆	4/23/2022	160	2:40	450	5/26/2022	3:29	30%

An increase in cell voltage and specific gravity at full charge was also generally observed for all three battery packs tested. Appendices 1 through 6 present cell voltage and specific gravity data for each battery pack both before and after the addition of PowerBatt solution. An interpretation of the test results was provided by PowerBatt USA and is documented in Appendix 7.

Test Report: EAI-PWB01-22-06 1 Page 4 of 17

Appendices

Appendix 1 GNB Load Test Before Adding Power Batt Solutions

CUSTOMER	DIRCKS L	OGISTICS	LOAD TEST DATE	4/22/2	2022		
MAKE	Gì	NB	SERIAL	GAT.	3262	YEAR	2015
Capacity	1020 Ah		Plate Volts	36	V	Specific Gravity	1.295
TEST ENGINEER	Richard	Simpson	LOAD TEST Current	160	A	PowerBatt Solution Added (mL)	612
CELL#:	Voltage at full charge	Specific Gravity at full		1 110	2 775	LOAD TEST	2440 10 104
		charge		1 HR 2 HR		3 HR	3HR-18 MN
1	2.08	1250		1.94	1.89	1.80	1.73
2	2.08	1230		2.35	1.76	1.79	1.75
3	2.30	1250		0.99	0.70	1.78	1.73
4	2.10	1250		1.94	1.90	1.82	1.80
5	2.07	1250		0.48	0.41	1.78	1.75
6	2.09	1250		1.94	1.89	1.79	1.69
7	2.07	1225		0.57	1.88	1.77	1.67
8	2.07	1225		1.75	1.87	1.75	1.65

Test Report: EAI-PWB01-22-06 1 Page 5 of 17

CUSTOMER	DIRCKS I	OGISTICS	LOAD TEST DATE	4/22/2	2022		
MAKE	G	NB	SERIAL	GAT.	3262	YEAR	2015
Capacity	1020 Ah		Plate Volts	36	V	Specific Gravity	1.295
TEST ENGINEER	Richard	Simpson	LOAD TEST Current	160	A	PowerBatt Solution Added (mL)	612
CELL#:	Voltage at full	Specific Gravity at full				LOAD TEST	
CEEE,	charge	charge		1 HR	2 HR	3 HR	3HR-18 MN
9	2.09	1230		2.13	1.89	1.71	No Data
10	2.09	1250		1.95	1.90	1.81	No Data
11	2.09	1225		2.06	1.89	1.81	No Data
12	2.08	1225		1.95	1.89	1.79	No Data
13	2.11	1250		1.97	1.93	1.87	No Data
14	2.09	1225		1.95	1.90	1.82	No Data
15	2.11	1250		1.98	1.94	1.89	No Data
16	2.09	1225		1.95	1.90	1.82	No Data
17	2.10	1225		1.96	1.91	1.85	No Data
18	2.09	1250		1.95	1.89	1.80	No Data

NOTES: Charged and equalized on Enersys Enforcer Serial number KJ123435. The yellow highlighted cell voltage readings were confirmed to be in error on the following day after load test. TOTAL POWERBATT PER CELL = 612ML.

Test Report: EAI-PWB01-22-06 1 Page 6 of 17

Appendix 2 GNB Load Test One Month in Service After Adding Power Batt Solutions

CUSTOMER	DIRCKS L	OGISTICS	LOAD TEST DATE	5/24	-/2022				
MAKE	G)	NB	SERIAL	GAT	GAT3262		YEAR		2015
Capacity	102	1020 Ah		30	6 V	Spe	1.295		
TEST ENGINEER	Richard	Richard Simpson		16	60 A	Powe A	612		
	Voltage at full	Specific		LOAD TEST					
CELL#:	charge	Gravity at full charge		1 HR	2 HR	3 HR	4 HR	4HR- 43MN	4HR - 52MN
1	2.12	1250		2.01	1.97	1.92	1.86	1.79	1.75
2	2.11	1250		2.03	1.96	1.91	1.84	1.77	1.74
3	2.12	1250		2.00	1.95	1.89	1.81	1.72	1.67
4	2.12	1250		2.01	1.97	1.92	1.86	1.81	1.79
5	2.12	1250		2.02	1.97	1.91	1.84	1.77	1.74
6	2.11	1250		2.00	1.94	1.92	1.85	1.76	1.72
7	2.10	1250		2.00	1.95	1.88	1.80	1.71	No Data
8	2.10	1250		1.99	1.95	1.89	1.81	1.69	No Data
9	2.12	1250		2.01	1.96	1.92	1.85	1.79	No Data
10	2.12	1250		2.01	1.97	1.92	1.86	1.79	No Data

Test Report: EAI-PWB01-22-06 1

CUSTOMER	DIRCKS L	OGISTICS	LOAD TEST DATE	5/24	/2022				
MAKE	Gì	NB	SERIAL	GAT3262		YEAR			2015
Capacity	1020	1020 Ah		30	6 V	Spe	cific Gra	vity	1.295
TEST ENGINEER	Richard Simpson		LOAD TEST Current	16	0 A	PowerBatt Solution Added (mL)			612
	Voltage at full	Specific		LOAD TEST					
CELL#:	charge	Gravity at full charge		1 HR	2 HR	3 HR	4 HR	4HR- 43MN	4HR - 52MN
11	2.12	1230		2.00	1.96	1.91	1.85	1.78	No Data
12	2.11	1250		2.01	1.96	1.91	1.85	1.78	1.75
13	2.13	1260		2.01	1.96	1.91	1.85	1.77	1.76
14	2.12	1230		2.01	1.97	1.93	1.87	1.82	1.77
15	2.14	1250		2.00	1.96	1.91	1.85	1.77	1.77
16	2.11	1250		2.03	1.99	1.95	1.90	1.86	1.54
17	2.13	1250		2.00	1.96	1.92	1.86	1.79	1.77
18	2.12	1250		2.02	1.98	1.94	1.88	1.84	1.83

NOTES: 5/23/22: Battery was fully charged and equalized. 5/24/22. Discharge was terminated before measurement of the "close to complete" discharge voltage for cell 7, 8, 9, 10 and 11 could be taken.

Test Report: EAI-PWB01-22-06 1 Page 8 of 17

Appendix 3 Hawker Load Test Before Adding Power Batt Solutions

CUSTOMER	DIRCKS L	LOGISTICS	LOAD TEST DATE	4/23/	2022				
MAKE	Hav	wker	SERIAL	PL106162171		YEAR	2016		
Capacity	750 Ah		Plate Volts	36	V	Specific Gravity	1.275- 1.285		
TEST ENGINEER	Richard	Simpson	LOAD TEST Current	160 A		160 A		PowerBatt Solution Added (mL)	450
CELL#:	Voltage at full	Specific Gravity at full				LOAD TEST			
CELL#.	charge	charge		1 HR 2 HR		2 HR- 40 MN			
1	2.23	1250		1.94	1.88	1.83			
2	2.17	1225		1.90	1.81	1.58			
3	2.19	1250		1.93	1.87	1.81			
4	2.19	1225		1.94	1.88	1.82			
5	2.19	1250		1.93	1.87	1.81			
6	2.21	1275		1.94	1.88	1.82			
7	2.20	1225		1.93	1.87	1.82			
8	2.18	1180		1.93	1.87	1.81			
9	2.17	1180		1.92	1.85	1.78	_		
10	2.17	1225		1.91	1.83	1.70			

Test Report: EAI-PWB01-22-06 1 Page 9 of 17

CUSTOMER	DIRCKS L	OGISTICS	LOAD TEST DATE	$\Delta f = \Delta f $			
MAKE	Hav	wker	SERIAL	PL1061	62171	YEAR	2016
Capacity	750 Ah		Plate Volts	36	V	Specific Gravity	1.275- 1.285
TEST ENGINEER	Richard	Simpson	LOAD TEST Current	160	A	PowerBatt Solution Added (mL)	450
CELL#:	Voltage at full	Specific Gravity at full				LOAD TEST	
CELL#.	charge	charge		1 HR 2 HR		2 HR- 40 MN	
11	2.18	1200		1.93	1.86	1.80	
12	2.19	1260		1.93	1.87	1.81	
13	2.20	1200		1.94	1.88	1.82	
14	2.19	1250		1.93	1.87	1.81	
15	2.20	1200		1.94	1.88	1.82	
16	2.18	1250		1.92	1.85	1.78	
17	2.19	1220		1.93	1.86	1.79	
18	2.20	1200		1.93	1.86	1.80	

NOTES: Cells topped off with a total of 8 gallons of water. Charged and equalized on Enersys Enforcer Serial number KL123405. 225 ML PowerBatt Solution added after load test on 4/23/22. An additional 225ML added on 4/26/22. TOTAL POWERBATT PER CELL = 450ML

Test Report: EAI-PWB01-22-06 1 Page 10 of 17

Appendix 4 Hawker Load Test One Month in Service After Adding Power Batt Solutions

CUSTOMER	DIRCKS L	OGISTICS	LOAD TEST DATE	5/26	5/2022			
MAKE	Hav	wker	SERIAL	PL106	5162171		YEAR	2016
Capacity	750 Ah		Plate Volts	30	6 V	Spe	cific Gravity	1.275- 1.285
TEST ENGINEER	Richard	Simpson	LOAD TEST Current	16	PowerBatt Solution Added (mL)			450
CELL#:	Voltage at full	Specific Gravity at full				LOAD	TEST	
CELL#.	charge	charge		1 HR	2 HR	3 HR	3 HR 29MN	
1	2.14	1270		1.95	1.89	1.82	1.78	
2	2.12	1270		1.93	1.87	1.77	1.70	
3	2.16	1275		1.94	1.88	1.80	1.76	
4	2.14	1275		1.94	1.88	1.80	1.76	
5	2.14	1270		1.94	1.88	1.80	1.75	
6	2.13	1275		1.94	1.88	1.81	1.77	
7	2.14	1275		1.93	1.86	1.78	1.74	
8	2.14	1250		1.94	1.88	1.81	1.81 1.76	
9	2.14	1250		1.93	1.87	1.78	1.73	
10	2.13	1250		1.93	1.86	1.76	1.67	

Test Report: EAI-PWB01-22-06 1 Page 11 of 17

CUSTOMER	DIRCKS L	LOGISTICS	LOAD TEST DATE	5/26	7/26/2022			
MAKE	Hav	wker	SERIAL	PL106	5162171		YEAR	2016
Capacity	750 Ah		Plate Volts	30	6 V	Specific Gravity		1.275- 1.285
TEST ENGINEER	Richard	Simpson	LOAD TEST Current	PowerBatt Solution Added (mL)			450	
CELL#:	Voltage at full	Specific Gravity at full		LOAD TEST				
CEEE	charge	charge		1 HR	2 HR	3 HR	3 HR 3 HR 29MN	
11	2.13	1275		1.94	1.89	1.79	1.75	
12	2.14	1275		1.94	1.87	1.79	1.73	
13	2.14	1275		1.93	1.87	1.80	1.77	
14	2.14	1275		1.94	1.87	1.79	1.75	
15	2.15	1275		1.95	1.89	1.82	1.78	
16	2.13	1270		1.93	1.87	1.78	1.78 1.72	
17	2.14	1270		1.94	1.87	1.79	1.73	
18	2.14	1270		1.93	1.87	1.79	1.75	

NOTES: Battery charged and equalized on 5/25/22. Load test complete on 5/26/22. Voltage readings of Hawker cells were taken immediately after equalization, with no rest time for depolarization. As a result, these voltages are higher than the voltage readings for the second load test which were taken after an overnight rest period.

Test Report: EAI-PWB01-22-06 1 Page 12 of 17

Appendix 5 Douglas Load Test Before Adding Power Batt Solutions

CUSTOMER	DIRCKS L	OGISTICS	LOAD TEST DATE	4/25	4/25/2022				
MAKE	Dou	ıglas	SERIAL	MNA1191611		YEAR			2015
Capacity	750 Ah		Plate Volts	30	6 V	Spe	cific Grav	rity	1.285
TEST ENGINEER	Richard	Simpson	LOAD TEST Current	PowerBatt Solution Added (mL)			400		
	Voltage at full	Specific		LOAD TEST					
CELL#:	charge	Gravity at full charge		1 HR	2 HR	3 HR	3HR 15MN	3HR 26MN	
1	2.16	1250		1.94	1.87	1.78	1.74	1.69	
2	2.15	1225		1.93	1.86	1.77	1.72	1.66	
3	2.16	1250		1.95	1.89	1.82	1.80	1.78	
4	2.15	1250		1.94	1.88	1.80	1.78	1.76	
5	2.16	1220		1.95	1.90	1.83	1.81	1.80	
6	2.16	1250		1.94	1.89	1.81	1.79	1.76	
7	2.16	1250		1.95	1.90	1.83	1.80	1.79	
8	2.15	1230		1.94	1.89	1.81	1.79	1.77	
9	2.15	1210		1.94	1.88	1.81	1.79	1.77	

Test Report: EAI-PWB01-22-06 1 Page 13 of 17

CUSTOMER	DIRCKS LOGISTICS		LOAD TEST DATE	4/25/2022					
MAKE	Douglas		SERIAL	MNA1191611		YEAR			2015
Capacity	750 Ah		Plate Volts	36 V		Specific Gravity			1.285
TEST ENGINEER	Richard Simpson		LOAD TEST Current	150 A		PowerBatt Solution Added (mL)			400
CELL#:	charge Gravity	Specific				LOAD			
		Gravity at full charge	1	1 HR	2 HR	3 HR	3HR 15MN	3HR 26 MN	
10	2.15	1250		1.94	1.88	1.79	1.76	1.73	
11	2.15	1225		1.93	1.87	1.80	1.77	1.75	
12	2.16	1250		1.95	1.89	1.82	1.80	1.78	
13	2.16	1240		1.95	1.89	1.81	1.79	1.77	
14	2.15	1250		1.94	1.88	1.81	1.78	1.76	
15	2.15	1250		1.94	1.88	1.80	1.77	1.74	
16	2.14	1225		1.94	1.88	1.80	1.78	1.75	
17	2.16	1260		1.95	1.88	1.81	1.78	1.76	
18	2.16	1260		1.96	1.89	1.82	1.79	1.78	

NOTES: Cells topped off with 3 gallons of water on 4/25/22. Charged and equalized with Enersys Enforcer Serial #KJ123435. PowerBatt solution added on 4/25/22. Calculated addition is 450ML. However, only 400ML added due to limited head space.

Test Report: EAI-PWB01-22-06 1 Page 14 of 17

Appendix 6 Douglas Load Test One Month in Service After Adding Power Batt Solutions

CUSTOMER	DIRCKS LOGISTICS		LOAD TEST DATE	5/25/2022					
MAKE	Douglas		SERIAL	MNA1191611		YEAR			2015
Capacity	750 Ah		Plate Volts	36 V		Specific Gravity			1.285
TEST ENGINEER	Richard Simpson		LOAD TEST Current	150 A		PowerBatt Solution Added (mL)			400
	Voltage at full charge	Specific Gravity at full charge				LOAD TEST			
CELL#:				1 HR	2 HR	3 HR	3 HR 30MN	3 HR 52 MN	
1	2.18	1250		1.97	1.91	1.84	1.80	1.77	
2	2.15	1250		1.95	1.92	1.83	1.80	1.75	
3	2.14	1230		1.96	1.90	1.82	1.79	1.76	
4	2.16	1250		1.94	1.91	1.81	1.77	1.73	
5	2.16	1250		1.95	1.90	1.84	1.78	1.76	
6	2.16	1250		1.96	1.91	1.84	1.80	1.77	
7	2.17	1250		1.95	1.90	1.83	1.79	1.76	
8	2.16	1250		1.96	1.91	1.85	1.82	1.78	
9	2.16	1250		1.96	1.90	1.83	1.79	1.76	

Test Report: EAI-PWB01-22-06 1

CUSTOMER	DIRCKS LOGISTICS		T	OAD TEST ATE	5/25/2022					
MAKE	Douglas		SER	RIAL	MNA1191611		YEAR			2015
Capacity	750 Ah			Plate Volts	36 V		Specific Gravity			1.285
TEST ENGINEER	Richard Simpson		T	OAD EST rent	150 A		PowerBatt Solution Added (mL)			400
CELL#:	Voltage at full	Specific				Γ				
	charge	Gravity at full charge			1 HR	2 HR	3 HR	3 HR 30MN	3 HR 52 MN	
10	2.17	1250			1.96	1.91	1.84	1.79	1.76	
11	2.16	1250			1.95	1.89	1.81	1.76	1.71	
12	2.16	1250			1.94	1.89	1.81	1.75	1.68	
13	2.17	1250			1.96	1.90	1.84	1.79	1.71	
14	2.15	1230			1.94	1.89	1.81	1.77	1.73	
15	2.15	1230			1.95	1.89	1.81	1.76	1.71	
16	2.16	1250			1.94	1.89	1.82	1.76	1.72	
17	2.16	1250			1.95	1.90	1.83	1.79	1.76	
18	2.16	1250			1.95	1.90	1.83	1.79	1.76	
	NOTES: Charged	l and equalized on 5	5/24/22. Load test	perform	med and voltage	and specifi	c gravity me	asurement	s taken 5/2	25/22.

Test Report: EAI-PWB01-22-06 1

Appendix 7 PowerBatt USA Interpretation of Test Report

EXECUTIVE SUMMARY AND SUMMATION OF RESULTS

As directed by the Department of Energy, PowerBatt USA presented its PowerBatt product to EAI under the premise that it is a liquid additive which will reduce or eliminate the presence of performance inhibiting hard crystalized sulfate, a by-product of all lead acid batteries. As a result, the capacity of batteries will be restored to an appreciably greater percentage of full capacity.

Based upon this premise, EAI performed controlled tests on six- and seven-year-old GNB, Hawker, and Douglas batteries still in operation and furnished by Toyota Material Handling of Phoenix, AZ. Based upon the results of that testing, EAI test results affirm PowerBatt desulfated the batteries and improved the batteries' discharge times up to 48%. This resulted in a statistically appreciable increase in the overall capacity of the batteries. The data also reflects increased and equalized voltage and density.

Based on EAI test results, we conclude the use of PowerBatt effectively restored the capacity of the operational batteries and enabled continued use. These certified results allow us to state conclusively the restoration and enhanced performance would appreciably postpone the need for new battery replacement due to sulfation. This in turn will lead to a reduction in the carbon footprint associated with manufacturing and recycling of the lead acid batteries.

Christopher French: President

PowerBatt USA Hugo, MN.

<End of Test Report>

Test Report: EAI-PWB01-22-06 1 Page 17 of 17